Mathematics II Congruence




Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]
9. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses
parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular
bisector of a line segment are exactly those equidistant from the segment’s endpoints.
10. Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of
isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and
half the length; the medians of a triangle meet at a point.
11. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the
diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.