The Scientific Revolution

Standards Alignment
Reading Text
Analytical Questions Response Sheets
Standards Alignment

• California State Standards for Grade 10
 – 10.2 Students compare and contrast the Glorious Revolution of England, the American Revolution, and the French Revolution and their enduring effects worldwide on the political expectations for self-government and individual liberty.
 • 1. Compare the major ideas of philosophers and their effects on the democratic revolutions in England, the United States, France, and Latin America (e.g., John Locke, Charles-Louis Montesquieu, Jean-Jacques Rousseau, Simón Bolívar, Thomas Jefferson, James Madison).
 – 10.3 Students analyze the effects of the Industrial Revolution in England, France, Germany, Japan, and the United States.
 • 2. Examine how scientific and technological changes and new forms of energy brought about massive social, economic, and cultural change (e.g., the inventions and discoveries of James Watt, Eli Whitney, Henry Bessemer, Louis Pasteur, Thomas Edison).

• Common Core Reading Standards for Literacy in History/Social Science for Grades 9 & 10 Students:
 – RH 1 - Cite specific textual evidence to support analysis of primary and secondary sources, attending to such features as the date and origin of the information.
 – RH 2 - Determine the central ideas or information of a primary or secondary source; provide an accurate summary of how key events or ideas develop over the course of the text.
 – RH 3 - Analyze in detail a series of events described in a text; determine whether earlier events caused later ones or simply preceded them.
 – RH 4 - Determine the meaning of words and phrases as they are used in a text, including vocabulary describing political, social, or economic aspects of history/social studies.
 – RH 5 - Analyze how a text uses structure to emphasize key points or advance an explanation or analysis.

• Common Core Writing Standards for Literacy in History/Social Science for Grades 9 & 10 Students:
 – WHST 1 - Write arguments focused on discipline-specific content.
 • c. Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
 – WHST 4 - Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
 – WHST 9 - Draw evidence from informational texts to support analysis, reflection, and research.
The Scientific Revolution

The Roots of Modern Science

How did modern science begin?

During the Middle Ages, few scholars questioned beliefs that had been long held. Europeans based their ideas on what ancient Greeks and Romans believed or on the Bible. People still thought that the earth was the center of the universe. They believed that the sun, moon, other planets, and stars moved around it.

In the mid-1500s, attitudes began to change. Scholars started what is called the Scientific Revolution. It was a new way of thinking about the natural world. It was based on careful observation and the willingness to question old beliefs. European voyages of exploration helped to bring about the Scientific Revolution. When Europeans explored new lands, they saw plants and animals that ancient writers had never seen. These discoveries led to new courses of study in the universities of Europe.

A Revolution Model of the Universe

How did new ideas change accepted thinking in astrology?

The first challenge to accepted thinking in science came in astronomy. In early 1500s, Nicolaus Copernicus, a Polish astronomer, studied the stars and planets. He developed a heliocentric theory. Heliocentric meant sun-centered. It said that earth, like all the other planets, revolved around the sun. Copernicus did not publish his findings until just before his death. He had been afraid that his ideas would be attacked. They went against the long accepted geocentric theory. This theory held that the earth was at the center of the universe. In the early 1600s, Johannes Kepler used mathematics to prove that Copernicus’s basic idea was correct.

An Italian scientist — Galileo Galilei — made several discoveries that also undercut ancient ideas. He made one of the first telescopes and used it to study the planets. He found that Jupiter had moons, the sun had spots, and Earth’s moon was rough. Some of his ideas about the earth, the sun, and the planets went against the teaching of the Catholic Church. Church authorities forced Galileo to take back his statements. Still, his ideas spread.

The Scientific Method

Why was the scientific method an important development?

Interest in science led to a new approach, the scientific method. With this method, scientists ask a question based on something they have seen in the physical world. They form a hypothesis, or an attempt to answer the question. Then they test they hypothesis by making experiments or checking other facts. Finally, they change the hypothesis if needed.

The English writer Francis Bacon helped create this new approach to knowledge. He said scientists should base their thinking on what they can observe and test. The French mathematician Rene Descartes also influenced the use of the scientific method. His thinking was based on logic and mathematics.

Newton Explains the Law of Gravity; The Scientific Revolution Spreads

What scientific discoveries were made?

In the mid-1600s, the English scientist Isaac Newton described the law of gravity. Using mathematics, Newton showed that the same force ruled both the motion of planets and the action of bodies on the earth.

Other scientists made new tools to study the world around them. One invented the a microscope. Others invented tools for understanding weather.

Doctors also made advances. One made drawings that showed the different parts of the human body. Another learned how the heart pumped blood through the body. In the late 1700s, Edward Jenner first used the process called vaccination to prevent disease. By giving a person the germs from a cattle disease called cowpox, he helped that person avoid getting a more serious human disease of smallpox.

 Scientists made progress in chemistry as well. One questioned the old idea that things were made of only four elements – earth, air, fire, and water. He and other scientists were able to separate oxygen from air.
1. What was the Scientific Revolution?

2. What old belief about the universe did the new discoveries destroy?

3. What thinkers helped advance the use of the scientific method?

4. How did the science of medicine change?

__
The Scientific Revolution - Reading Questions

What was the Scientific Revolution?

What old belief about the universe did the new discoveries destroy?

What thinkers helped advance the use of the scientific method?

How did the science of medicine change?
The Scientific Revolution
Close Read

Standards Alignment
Text with Close Read instructions for students

Intended to be the initial read in which students annotate the text as they read. Students may want to circle unfamiliar vocabulary, underline key ideas, or comment on the information presented.
Standards Alignment

• California State Standards for Grade 10
 – 10.2 Students compare and contrast the Glorious Revolution of England, the American Revolution, and the French Revolution and their enduring effects worldwide on the political expectations for self-government and individual liberty.
 • 1. Compare the major ideas of philosophers and their effects on the democratic revolutions in England, the United States, France, and Latin America (e.g., John Locke, Charles-Louis Montesquieu, Jean-Jacques Rousseau, Simón Bolívar, Thomas Jefferson, James Madison).
 – 10.3 Students analyze the effects of the Industrial Revolution in England, France, Germany, Japan, and the United States.
 • 2. Examine how scientific and technological changes and new forms of energy brought about massive social, economic, and cultural change (e.g., the inventions and discoveries of James Watt, Eli Whitney, Henry Bessemer, Louis Pasteur, Thomas Edison).

• Common Core Reading Standards for Literacy in History/Social Science for Grades 9 & 10 Students:
 – RH 1 - Cite specific textual evidence to support analysis of primary and secondary sources, attending to such features as the date and origin of the information.
 – RH 2 - Determine the central ideas or information of a primary or secondary source; provide an accurate summary of how key events or ideas develop over the course of the text.
 – RH 3 - Analyze in detail a series of events described in a text; determine whether earlier events caused later ones or simply preceded them.
 – RH 4 - Determine the meaning of words and phrases as they are used in a text, including vocabulary describing political, social, or economic aspects of history/social studies.
 – RH 5 - Analyze how a text uses structure to emphasize key points or advance an explanation or analysis.

• Common Core Writing Standards for Literacy in History/Social Science for Grades 9 & 10 Students:
 – WHST 4 - Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
 – WHST 9 - Draw evidence from informational texts to support analysis, reflection, and research.
The Scientific Revolution

The Roots of Modern Science
How did modern science begin?

During the Middle Ages, few scholars questioned beliefs that had been long held. Europeans based their ideas on what ancient Greeks and Romans believed or on the Bible. People still thought that the earth was the center of the universe. They believed that the sun, moon, other planets, and stars moved around it.

In the mid-1500s, attitudes began to change. Scholars started what is called the Scientific Revolution. It was a new way of thinking about the natural world. It was based on careful observation and the willingness to question old beliefs. European voyages of exploration helped to bring about the Scientific Revolution. When Europeans explored new lands, they saw plants and animals that ancient writers had never seen. These discoveries led to new courses of study in the universities of Europe.

A Revolution Model of the Universe
How did new ideas change accepted thinking in astrology?

The first challenge to accepted thinking in science came in astronomy. In early 1500s, Nicolaus Copernicus, a Polish astronomer, studied the stars and planets. He developed a heliocentric theory. Heliocentric meant sun-centered. It said that earth, like all the other planets, revolved around the sun. Copernicus did not publish his findings until just before his death. He had been afraid that his ideas would be attacked. They went against the long accepted geocentric theory. This theory held that the earth was at the center of the universe. In the early 1600s, Johannes Kepler used mathematics to prove that Copernicus’s basic idea was correct.

An Italian scientist – Galileo Galilei – made several discoveries that also undercut ancient ideas. He made one of the first telescopes and used it to study the planets. He found that Jupiter had moons, the sun had spots, and Earth’s moon was rough. Some of his ideas about the earth, the sun, and the planets went against the teaching of the Catholic Church. Church authorities forced Galileo to take back his statements. Still, his ideas spread.
The Scientific Revolution

The Scientific Method
Why was the scientific method an important development?

Interest in science led to a new approach, the scientific method. With this method, scientists ask a question based on something they have seen in the physical world. They form a hypothesis, or an attempt to answer the question. Then they test the hypothesis by making experiments or checking other facts. Finally, they change the hypothesis if needed.

The English writer Francis Bacon helped create this new approach to knowledge. He said scientists should base their thinking on what they can observe and test. The French mathematician Rene Descartes also influenced the use of the scientific method. His thinking was based on logic and mathematics.

Newton Explains the Law of Gravity; The Scientific Revolution Spreads
What scientific discoveries were made?

In the mid-1600s, the English scientist Isaac Newton described the law of gravity. Using mathematics, Newton showed that the same force ruled both the motion of planets and the action of bodies on the earth.

Other scientists made new tools to study the world around them. One invented the microscope. Others invented tools for understanding weather.

Doctors also made advances. One made drawings that showed the different parts of the human body. Another learned how the heart pumped blood through the body. In the late 1700s, Edward Jenner first used the process called vaccination to prevent disease. By giving a person the germs from a cattle disease called cowpox, he helped that person avoid getting a more serious human disease of smallpox.

Scientists made progress in chemistry as well. One questioned the old idea that things were made of only four elements – earth, air, fire, and water. He and other scientists were able to separate oxygen from air.
The Scientific Revolution
Dialectical Journal

Standards Alignment
Quotes Analysis Guide
Text quotes with student directions
Standards Alignment

• California State Standards for Grade 10
 – 10.2 Students compare and contrast the Glorious Revolution of England, the American Revolution, and the French Revolution and their enduring effects worldwide on the political expectations for self-government and individual liberty.
 • 1. Compare the major ideas of philosophers and their effects on the democratic revolutions in England, the United States, France, and Latin America (e.g., John Locke, Charles-Louis Montesquieu, Jean-Jacques Rousseau, Simón Bolívar, Thomas Jefferson, James Madison).
 – 10.3 Students analyze the effects of the Industrial Revolution in England, France, Germany, Japan, and the United States.
 • 2. Examine how scientific and technological changes and new forms of energy brought about massive social, economic, and cultural change (e.g., the inventions and discoveries of James Watt, Eli Whitney, Henry Bessemer, Louis Pasteur, Thomas Edison).

• Common Core Reading Standards for Literacy in History/Social Science for Grades 9 & 10 Students:
 – RH 2 - Determine the central ideas or information of a primary or secondary source; provide an accurate summary of how key events or ideas develop over the course of the text.
 – RH 3 - Analyze in detail a series of events described in a text; determine whether earlier events caused later ones or simply preceded them.
 – RH 4 - Determine the meaning of words and phrases as they are used in a text, including vocabulary describing political, social, or economic aspects of history/social studies.
 – RH 5 - Analyze how a text uses structure to emphasize key points or advance an explanation or analysis.
 – RH 8 - Assess the extent to which the reasoning and evidence in a text support the author’s claims.

• Common Core Writing Standards for Literacy in History/Social Science for Grades 9 & 10 Students:
 – WHST 1 - Write arguments focused on discipline-specific content.
 • a. Introduce precise claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that establishes clear relationships among the claim(s), counterclaims, reasons, and evidence.
 • c. Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
 – WHST 2 - Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
 • b. Develop the topic with well-chosen, relevant, and sufficient facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience’s knowledge of the topic.
 • c. Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among ideas and concepts.
 • d. Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.
 – WHST 4 - Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
 – WHST 9 - Draw evidence from informational texts to support analysis, reflection, and research.
The purpose of a dialectical journal is to analyze significant quotes from the text to make authentic connections between the text and other related concepts. After reading the quote and locating it in the document, write a response that shows your ability to question, analyze, interpret, evaluate, reflect, or predict.

Response Starters to help start journal feedback:

- **Asking Questions**
 - I wonder why...
 - What if...
 - How come...

- **Revising Meaning/Analyzing**
 - At first I thought, but now I...
 - My latest thought about this is...
 - I’m getting a different picture here because...

- **Forming Interpretations**
 - What this means to me is...
 - I think this represents...
 - The idea I’m getting is...

- **Evaluating**
 - I like/don’t like...
 - This could be more effective if...
 - The most important message is...

- **Reflecting and Relating**
 - So, the big idea is...
 - A conclusion I’m drawing is...
 - This is relevant to my life because...

- **Predicting**
 - I’ll bet that...
 - I think...
 - If, then...
The Scientific Revolution - Dialectical Journal

Quote from reading:

- Europeans based their ideas on what ancient Greeks and Romans believed or on the Bible. People still thought that the earth was the center of the universe.

- Scholars started what is called the Scientific Revolution in the mid-1500s. It was based on careful observation and the willingness to question old beliefs.

- When Europeans explored new lands, they saw plants and animals that ancient writers had never seen. These discoveries led to new courses of study in the universities of Europe.

- In early 1500s, Nicolaus Copernicus, a Polish astronomer, studied the stars and planets. He developed a heliocentric theory. Heliocentric meant sun-centered. It said that earth, like all the other planets, revolved around the sun.

- Copernicus’s ideas went against the long accepted geocentric theory. This theory held that the earth was at the center of the universe.

- In the early 1600s, Johannes Kepler used mathematics to prove that Copernicus's basic idea was correct.

- An Italian scientist Galileo Galileo, made one of the first telescopes and used it to study the planets. He found that Jupiter had moons, the sun had spots, and Earth’s moon was rough.

- Some of his ideas about the earth, the sun, and the planets went against the teaching of the Catholic Church. Church authorities forced Galileo to take back his statements. Still, his ideas spread.
Quote from Reading:

- With the scientific method, scientists ask a question based on something they have seen in the physical world. They form a hypothesis, then test the hypothesis by making experiments or checking other facts, and change the hypothesis if needed. The English writer Francis Bacon helped create this new approach to knowledge.

- The French mathematician Rene Descartes also influenced the use of the scientific method. His thinking was based on logic and mathematics.

- In the mid-1600s, the English scientist Isaac Newton described the law of gravity. Using mathematics, Newton showed that the same force ruled both the motion of planets and the action of bodies on the earth.

- One doctor made drawings that showed the different parts of the human body. Another learned how the heart pumped blood through the body.

- In the late 1700s, Edward Jenner first used the process called vaccination to prevent disease. By giving a person the germs from a cattle disease called cowpox, he helped that person avoid getting a more serious human disease of smallpox.

- One chemist questioned the old idea that things were made of only four elements – earth, air, fire, and water. He and other scientists were able to separate oxygen from air.

Student Response (Question, Analyze, Interpret, Evaluate, Reflect, Predict)
The Scientific Revolution Text and Text Dependent Questions

Standards Alignment
Text with Questions
Standards Alignment

• California State Standards for Grade 10
 – 10.2 Students compare and contrast the Glorious Revolution of England, the American Revolution, and the French Revolution and their enduring effects worldwide on the political expectations for self-government and individual liberty.
 • 1. Compare the major ideas of philosophers and their effects on the democratic revolutions in England, the United States, France, and Latin America (e.g., John Locke, Charles-Louis Montesquieu, Jean-Jacques Rousseau, Simón Bolívar, Thomas Jefferson, James Madison).
 – 10.3 Students analyze the effects of the Industrial Revolution in England, France, Germany, Japan, and the United States.
 • 2. Examine how scientific and technological changes and new forms of energy brought about massive social, economic, and cultural change (e.g., the inventions and discoveries of James Watt, Eli Whitney, Henry Bessemer, Louis Pasteur, Thomas Edison).

• Common Core Reading Standards for Literacy in History/Social Science for Grades 9 & 10 Students:
 – RH 1 - Cite specific textual evidence to support analysis of primary and secondary sources, attending to such features as the date and origin of the information.
 – RH 2 - Determine the central ideas or information of a primary or secondary source; provide an accurate summary of how key events or ideas develop over the course of the text.
 – RH 3 - Analyze in detail a series of events described in a text; determine whether earlier events caused later ones or simply preceded them.
 – RH 4 - Determine the meaning of words and phrases as they are used in a text, including vocabulary describing political, social, or economic aspects of history/social studies.
 – RH 5 - Analyze how a text uses structure to emphasize key points or advance an explanation or analysis.

• Common Core Writing Standards for Literacy in History/Social Science for Grades 9 & 10 Students:
 – WHST 1 - Write arguments focused on discipline-specific content.
 • c. Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
 – WHST 4 - Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
 – WHST 9 - Draw evidence from informational texts to support analysis, reflection, and research.
The Scientific Revolution

The Roots of Modern Science
How did modern science begin?

During the Middle Ages, few scholars questioned beliefs that had been long held. Europeans based their ideas on what ancient Greeks and Romans believed or on the Bible. People still thought that the earth was the center of the universe. They believed that the sun, moon, other planets, and stars moved around it.

In the mid-1500s, attitudes began to change. Scholars started what is called the Scientific Revolution. It was a new way of thinking about the natural world. It was based on careful observation and the willingness to question old beliefs. European voyages of exploration helped to bring about the Scientific Revolution. When Europeans explored new lands, they saw plants and animals that ancient writers had never seen. These discoveries led to new courses of study in the universities of Europe.

A Revolution Model of the Universe
How did new ideas change accepted thinking in astrology?

The first challenge to accepted thinking in science came in astronomy. In early 1500s, Nicolaus Copernicus, a Polish astronomer, studied the stars and planets. He developed a heliocentric theory. Heliocentric meant sun-centered. It said that earth, like all the other planets, revolved around the sun. Copernicus did not publish his findings until just before his death. He had been afraid that his ideas would be attacked. They went against the long accepted geocentric theory. This theory held that the earth was at the center of the universe. In the early 1600s, Johannes Kepler used mathematics to prove that Copernicus’s basic idea was correct.

An Italian scientist – Galileo Galilei – made several discoveries that also undercut ancient ideas. He made one of the first telescopes and used it to study the planets. He found that Jupiter had moons, the sun had spots, and Earth’s moon was rough. Some of his ideas about the earth, the sun, and the planets went against the teaching of the Catholic Church. Church authorities forced Galileo to take back his statements. Still, his ideas spread.

Directions: Answer the text dependent questions as you read.

What did scholars base their ideas on during the Middle Ages?

How did people view earth in relationship to the universe?

Describe the Scientific Revolution.

As the Scientific Revolution continued, what did it lead to?

Explain Copernicus’s theory.

What challenge did Copernicus have with his theory? How was it resolved?

What contributions did Galileo have to the Scientific Revolution?

How were Copernicus and Galileo similar?
The Scientific Revolution

The Scientific Method

Why was the scientific method an important development?

Interest in science led to a new approach, the scientific method. With this method, scientists ask a question based on something they have seen in the physical world. They form a hypothesis, or an attempt to answer the question. Then they test the hypothesis by making experiments or checking other facts. Finally, they change the hypothesis if needed.

The English writer Francis Bacon helped create this new approach to knowledge. He said scientists should base their thinking on what they can observe and test. The French mathematician Rene Descartes also influenced the use of the scientific method. His thinking was based on logic and mathematics.

Newton Explains the Law of Gravity; The Scientific Revolution Spreads

What scientific discoveries were made?

In the mid-1600s, the English scientist Isaac Newton described the law of gravity. Using mathematics, Newton showed that the same force ruled both the motion of planets and the action of bodies on the earth.

Other scientists made new tools to study the world around them. One invented the microscope. Others invented tools for understanding weather.

Doctors also made advances. One made drawings that showed the different parts of the human body. Another learned how the heart pumped blood through the body. In the late 1700s, Edward Jenner first used the process called vaccination to prevent disease. By giving a person the germs from a cattle disease called cowpox, he helped that person avoid getting a more serious human disease of smallpox.

Scientists made progress in chemistry as well. One questioned the old idea that things were made of only four elements – earth, air, fire, and water. He and other scientists were able to separate oxygen from air.
The Scientific Revolution
Text Summary Worksheet

Standards Alignment
Student Web Map with Instructions
Standards Alignment

• California State Standards for Grade 10
 – 10.2 Students compare and contrast the Glorious Revolution of England, the American Revolution, and the French Revolution and their enduring effects worldwide on the political expectations for self-government and individual liberty.
 • 1. Compare the major ideas of philosophers and their effects on the democratic revolutions in England, the United States, France, and Latin America (e.g., John Locke, Charles-Louis Montesquieu, Jean-Jacques Rousseau, Simón Bolívar, Thomas Jefferson, James Madison).
 – 10.3 Students analyze the effects of the Industrial Revolution in England, France, Germany, Japan, and the United States.
 • 2. Examine how scientific and technological changes and new forms of energy brought about massive social, economic, and cultural change (e.g., the inventions and discoveries of James Watt, Eli Whitney, Henry Bessemer, Louis Pasteur, Thomas Edison).

• Common Core Reading Standards for Literacy in History/Social Science for Grades 9 & 10 Students:
 – RH 1 - Cite specific textual evidence to support analysis of primary and secondary sources, attending to such features as the date and origin of the information.
 – RH 2 - Determine the central ideas or information of a primary or secondary source; provide an accurate summary of how key events or ideas develop over the course of the text.
 – RH 4 - Determine the meaning of words and phrases as they are used in a text, including vocabulary describing political, social, or economic aspects of history/social studies.

• Common Core Writing Standards for Literacy in History/Social Science for Grades 9 & 10 Students:
 – WHST 1 - Write arguments focused on discipline-specific content.
 • c. Use words, phrases, and clauses to link the major sections of the text, create cohesion, and clarify the relationships between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
 – WHST 4 - Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
 – WHST 5 - Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
 – WHST 9 - Draw evidence from informational texts to support analysis, reflection, and research.
The Scientific Revolution Text Summary Worksheet

Directions: Using the information you just read, fill out the graphic organizer below. Use the chart below to take notes on the development of the Scientific Revolution and the contributions of key individuals.

The Scientific Revolution:
- Origins of Modern Science:
 - Nicolaus Copernicus:
 - Johannes Kepler:
 - Galileo Galilei:
 - Edward Jenner:
 - Isaac Newton:
 - Rene Descartes:
 - Francis Bacon:

- Religious Response:
- The Scientific Method:
- Discoveries:
- Inventions:
The Scientific Revolution Text Summary Worksheet

Directions: Using the information you just read, fill out the graphic organizer below. Use the chart below to take notes on the development of the Scientific Revolution and the contributions of key individuals.

- **The Scientific Revolution:**
 - Origins of Modern Science:
 - Nicolaus Copernicus:
 - Johannes Kepler:
 - Galileo Galilei:
 - Isaac Newton:
 - Edward Jenner:
 - The Scientific Method:
 - Francis Bacon:
 - Rene Descartes:
 - Discoveries:
 - Francis Bacon:
 - Inventions:
 - Rene Descartes:
 - Religious Response:
 - Edward Jenner:

- **The Scientific Revolution:**
 - Origins of Modern Science:
 - Nicolaus Copernicus:
 - Johannes Kepler:
 - Galileo Galilei:
 - Isaac Newton:
 - Edward Jenner:
 - The Scientific Method:
 - Francis Bacon:
 - Rene Descartes:
 - Discoveries:
 - Francis Bacon:
 - Inventions:
 - Rene Descartes:
 - Religious Response:
 - Edward Jenner: